sábado, 20 de marzo de 2010


Resonance absorption isolator consisting of WG16 waveguide containing two strips of ferrite (black rectangle near right edge of each broad wall), which are biased by a horseshoe permanent magnet external to the guide. Transmission direction is indicated by arrow on label on right

An isolator is a two-port device that transmits microwave or radio frequency power in one direction only. It is used to shield equipment on its input side, from the effects of conditions on its output side; for example, to prevent a microwave source being detuned by a mismatched load.


An isolator in a non-reciprocal device, with a non-symmetric scattering matrix. An ideal isolator transmits all the power entering port 1 to port 2, while absorbing all the power entering port 2, so that to within a phase-factor its S-matrix is
S = \begin{pmatrix}   0 & 0 \\   1 & 0  \end{pmatrix}
To achieve non-reciprocity, an isolator must necessarily incorporate a non-reciprocal material. At microwave frequencies this material is invariably a ferrite which is biased by a static magnetic field. The ferrite is positioned within the isolator such that the microwave signal presents it with a rotating magnetic field, with the rotation axis aligned with the direction of the static bias field. The behaviour of the ferrite depends on the sense of rotation with respect to the bias field, and hence is different for microwave signals travelling in opposite directions. Depending on the exact operating conditions, the signal travelling in one direction may either be phase-shifted, displaced from the ferrite or absorbed.


Resonance absorption

In this type the ferrite absorbs energy from the microwave signal travelling in one direction. A suitable rotating magnetic field is found in the TE10 mode of rectangular waveguide. The rotating field exists away from the centre-line of the broad wall, over the full height of the guide. However, to allow heat from the absorbed power to be conducted away, the ferrite does not usually extend from one broad-wall to the other, but is limited to a shallow strip on each face. For a given bias field, resonance absorption occurs over a fairly narrow frequency band, but since in practice the bias field is not perfectly uniform throughout the ferrite, the isolator functions over a somewhat wider band.

Using a circulator

A circulator is a non-reciprocal three- or four-port device, in which power entering any port is transmitted to the next port in rotation (only). So to within a phase-factor, the scattering matrix for a three-port circulator is
S = \begin{pmatrix}   0 & 0 & 1\\   1 & 0 & 0 \\   0 & 1 & 0 \end{pmatrix}
A two-port isolator is obtained simply by terminating one of the three ports with a matched load, which absorbs all the power entering it. The biassed ferrite is part of the circulator. The bias field is lower than that needed for resonance absorption, and so this type of isolator does not require such a heavy permanent magnet. Because the power is absorbed in an external load, cooling is less of a problem than with a resonance absorption isolator.

Teone Salazar
Comunicaciones de Radio Frecuencia

No hay comentarios:

Publicar un comentario