viernes, 28 de mayo de 2010

Dispositivos de Microondas

Dispositivos de microondas:

La ingeniería de microondas/milimétricas tiene que ver con todos aquéllos dispositivos, componentes y sistemas que trabajen en el rango frecuencial de 300 MHz a 300 GHz. Debido a tan amplio margen de frecuencias, tales componentes encuentran aplicación en diversos sistemas de comunicación. Ejemplo típico es un enlace de Radiocomunicaciones terrestre a 6 GHz en el cual detrás de las antenas emisora y receptora, hay toda una circuitería capaz de generar, distribuir, modular, amplificar, mezclar, filtrar y detectar la señal. Otros ejemplos lo constituyen los sistemas de comunicación por satélite, los sistemas radar y los sistemas de comunicación móviles, muy en boga en nuestros días.

La tecnología de semiconductores, que proporciona dispositivos activos que operan en el rango de las microondas, junto con la invención de líneas de transmisión planares; ha permitido la realización de tales funciones por circuitos híbridos de microondas.
En estos circuitos, sobre un determinado sustrato se definen las líneas de transmisión necesarias. Elementos pasivos (condensadores, resistencias) y activos (transistores, diodos) son posteriormente incorporados al circuito mediante el uso de pastas adhesivas y técnicas de soldadura. De ahí el nombre de tecnología híbrida de circuitos integrados (HMIC: "Hibrid Microwave Integrated Circuit"). Recientemente, la tecnología monolítica de circuitos de microondas (MMIC), permite el diseño de circuitos/subsistemas capaces de realizar, muchas de las funciones mencionadas anteriormente, en un sólo "chip". Por las ventajas que ofrece ésta tecnología, su aplicación en el diseño de amplificadores para receptores ópticos, constituye un campo activo de investigación y desarrollo. Prueba de ello es el trabajo realizado con la Universidad Politécnica de Madrid.

El diseño de circuitos de microondas en ambas tecnologías, ha exigido un modelado preciso de los diferentes elementos que forman el circuito. De especial importancia son los dispositivos activos (MESFET, HEMT, HBT); pues conocer su comportamiento tanto en pequeña señal como en gran señal (régimen no lineal), es imprescindible para poder predecir la respuesta de un determinado circuito que haga uso de él. El análisis, modelado y simulación de éstos dispositivos, constituye otra de las áreas de trabajo

Materiales en comunicaciones:

La utilización de nuevos materiales con altas prestaciones es uno de los pilares del avance espectacular de las tecnologías de la información y comunicaciones. El desarrollo de aplicaciones basadas en sus propiedades requiere un profundo conocimiento previo de éstas. En particular, el descubrimiento de superconductividad en óxidos cerámicos multimetálicos a temperaturas superiores a 77 K (superconductores de alta temperatura, SAT) puede permitir del desarrollo práctico de algunas aplicaciones de la superconductividad económicamente inviables con los superconductores clásicos. Sin embargo, la gran complejidad de los SAT y su naturaleza granular dificultan la puesta en marcha de aplicaciones de los mismos de forma inmediata, a pesar del gran esfuerzo investigador que en este campo se está realizando en los países avanzados. En concreto, en nuestro grupo se ha trabajado en la caracterización experimental y modelado fenomenológico de las propiedades electromagnéticas de superconductores de alta temperatura crítica, incidiendo especialmente en las implicaciones de la granularidad, y en el desarrollo de aplicaciones de los mismos en magnetometría y en cintas para el transporte de corriente sin pérdidas. Por otra parte, en relación con las aplicaciones de la superconductividad clásica, se ha trabajado en la implementación en España de los patrones primarios de tensión (efecto Josephson) y resistencia (efecto Hall cuántico), en colaboración con grupos nacionales y extranjeros especializados en metrología eléctrica básica. Por último, también se ha colaborado con otros grupos de investigación en la caracterización electromagnética de materiales de interés tecnológico, como imanes permanentes o aceros estructurales



Cuando se piensa en comunicación de datos generalmente se piensa en comunicación a través de cable, debido a que la mayoría de nosotros tratamos con este tipo de tecnología en nuestro día a día. Haciendo a un lado las complicadas redes cableadas también tenemos la llamada COMUNICACIÓN INALÁMBRICA muy comúnmente a nuestro alrededor.

La Comunicación de data inalámbrica en la forma de microondas y enlaces de satélites son usados para transferir voz y data a larga distancia. Los canales inalámbricos son utilizados para la comunicación digital cuando no es económicamente conveniente la conexión de dos puntos vía cable; además son ampliamente utilizados para interconectar redes locales (LANS) con sus homologas redes de área amplia (WANS) sobre distancias moderadas y obstáculos como autopistas, lagos, edificios y ríos. Los enlaces vía satélite permiten no solo rebasar obstáculos físicos sino que son capaces de comunicar continentes enteros, barcos, rebasando distancia sumamente grandes.
Los sistemas de satélites y de microondas utilizan frecuencias que están en el rango de los MHz y GHz, usualmente utilizan diferentes frecuencias para evitar interferencias pero comparten algunas bandas de frecuencias.

COMUNICACIÓN VÍA MICROONDAS:

Básicamente un enlace vía microondas consiste en tres componentes fundamentales: El Transmisor, El receptor y El Canal Aéreo. El Transmisor es el responsable de modular una señal digital a la frecuencia utilizada para transmitir, El Canal Aéreo representa un camino abierto entre el transmisor y el receptor, y como es de esperarse el receptor es el encargado de capturar la señal transmitida y llevarla de nuevo a señal digital.

El factor limitante de la propagación de la señal en enlaces microondas es la distancia que se debe cubrir entre el transmisor y el receptor, además esta distancia debe ser libre de obstáculos. Otro aspecto que se debe señalar es que en estos enlaces, el camino entre el receptor y el transmisor debe tener una altura mínima sobre los obstáculos en la vía, para compensar este efecto se utilizan torres para ajustar dichas alturas.


ANTENAS Y TORRES DE MICROONDAS:

La distancia cubierta por enlaces microondas puede ser incrementada por el uso de repetidoras, las cuales amplifican y redireccionan la señal, es importante destacar que los obstáculos de la señal pueden ser salvados a través de reflectores pasivos. Las siguientes figuras muestran como trabaja un repetidor y como se ven los reflectores pasivos.



                                                                             


La señal de microondas transmitidas es distorsionada y atenuada mientras viaja desde el transmisor hasta el receptor, estas atenuaciones y distorsiones son causadas por una perdida de poder dependiente a la distancia, reflexión y refracción debido a obstáculos y superficies reflectoras, y a pérdidas atmosféricas.
La siguiente es una lista de frecuencias utilizadas por los sistemas de microondas:

Common Carrier Operational Fixed
2.110 2.130 GHz
1.850 1.990 GHz
2.160 2.180 GHz
2.130 2.150 GHz
3.700 4.200 GHz
2.180 2.200 GHz
5.925 6.425 GHz
2.500 2.690 GHz
10.7 11.700 GHz
6.575 6.875 GHz
12.2 12.700 GHz

Debido al uso de las frecuencias antes mencionadas algunas de las ventajas son:
  • Antenas relativamente pequeñas son efectivas.
  • A estas frecuencias las ondas de radio se comportan como ondas de luz, por ello la señal puede ser enfocada utilizando antenas parabólicas y antenas de embudo, además pueden ser reflejadas con reflectores pasivos.
  • Ora ventaja es el ancho de banda, que va de 2 a 24 GHz.

Como todo en la vida, el uso de estas frecuencias también posee desventajas:
Las frecuencias son susceptibles a un fenómeno llamado Disminución de Multicamino (Multipath Fafing), lo que causa profundas disminuciones en el poder de las señales recibidas.

A estas frecuencias las perdidas ambientales se transforman en un factor importante, la absorción de poder causada por la lluvia puede afectar dramáticamente el Performance del canal.

COMUNICACIÓN POR SATÉLITE:

Básicamente, los enlaces satelitales son iguales a los de microondas excepto que uno de los extremos de la conexión se encuentra en el espacio, como se había mencionado un factor limitante para la comunicación microondas es que tiene que existir una línea recta entre los dos puntos pero como la tierra es esférica esta línea se ve limitada en tamaño entonces, colocando sea el receptor o el transmisor en el espacio se cubre un área más grande de superficie.

El siguiente gráfico muestra un diagrama sencillo de un enlace vía satélite, nótese que los términos UPLINK y DOWNLINK aparecen en la figura, el primero se refiere al enlace de la tierra al satélite y la segunda del satélite a la tierra.




Las comunicaciones vía satélite poseen numerosas ventajas sobre las comunicaciones terrestres, la siguiente es una lista de algunas de estas ventajas:
  • El costo de un satélite es independiente a la distancia que valla a cubrir.
  • La comunicación entre dos estaciones terrestres no necesita de un gran número de repetidoras puesto que solo se utiliza un satélite.
  • Las poblaciones pueden ser cubiertas con una sola señal de satélite, sin tener que preocuparse en gran medida del problema de los obstáculos.
  • Grandes cantidades de ancho de bandas están disponibles en los circuitos satelitales generando mayores velocidades en la transmisión de voz, data y vídeo sin hacer uso de un costoso enlace telefónico.

Estas ventajas poseen sus contrapartes, alguna de ellas son:
  • El retardo entre el UPLINK y el DOWNLINK esta alrededor de un cuarto de segundo, o de medio segundo para una señal de eco.
  • La absorción por la lluvia es proporcional a la frecuencia de la onda.
  • Conexiones satelitales multiplexadas imponen un retardo que afectan las comunicaciones de voz, por lo cual son generalmente evitadas.

Los satélites de comunicación están frecuentemente ubicados en lo que llamamos Orbitas Geosincronizadas, lo que significa que el satélite circulará la tierra a la misma velocidad en que esta rota lo que lo hace parecer inmóvil desde la tierra. Un a ventaja de esto es que el satélite siempre esta a la disposición para su uso. Un satélite para estar en este tipo de órbitas debe ser posicionado a 13.937,5 Kms. de altura, con lo que es posible cubrir a toda la tierra utilizando solo tres satélites como lo muestra la figura.



Un satélite no puede retransmitir una señal a la misma frecuencia a la que es recibida, si esto ocurriese el satélite interferiría con la señal de la estación terrestre, por esto el satélite tiene que convertir la señal recibida de una frecuencia a otra antes de retransmitirla, para hacer esto lo hacemos con algo llamado "Transponders". La siguiente imagen muestra como es el proceso.

Al igual que los enlaces de microondas las señales transmitidas vía satélites son también degradadas por la distancia y las condiciones atmosféricas.
Otro punto que cabe destacar es que existen satélites que se encargan de regenerar la señal recibida antes de retransmitirla, pero estos solo pueden ser utilizados para señales digitales, mientras que los satélites que no lo hacen pueden trabajar con ambos tipos de señales (Análogas y Digitales).


                                                                                                                                                Romero Mora Loren A. C.I: 18.762.881 
                                                                                                                                                CRF














No hay comentarios:

Publicar un comentario